Appropriate Causal Models and Stability of Causation
نویسنده
چکیده
Causal models defined in terms of structural equations have proved to be quite a powerful way of representing knowledge regarding causality. However, a number of authors have given examples that seem to show that the Halpern-Pearl (HP) definition of causality (Halpern & Pearl 2005) gives intuitively unreasonable answers. Here it is shown that, for each of these examples, we can give two stories consistent with the description in the example, such that intuitions regarding causality are quite different for each story. By adding additional variables, we can disambiguate the stories. Moreover, in the resulting causal models, the HP definition of causality gives the intuitively correct answer. It is also shown that, by adding extra variables, a modification to the original HP definition made to deal with an example of Hopkins and Pearl (2003) may not be necessary. Given how much can be done by adding extra variables, there might be a concern that the notion of causality is somewhat unstable. Can adding extra variables in a “conservative” way (i.e., maintaining all the relations between the variables in the original model) cause the answer to the question “Is X = x a cause of Y = y?” to alternate between “yes” and “no”? Here it is shown that adding an extra variable can change the answer from “yes’ to “no”, but after that, it cannot cannot change back to “yes”.
منابع مشابه
Appropriate Causal Models and the Stability of Causation
Causal models defined in terms of structural equations have proved to be quite a powerful way of representing knowledge regarding causality. However, a number of authors have given examples that seem to show that the Halpern-Pearl (HP) definition of causality [Halpern and Pearl 2005] gives intuitively unreasonable answers. Here it is shown that, for each of these examples, we can give two stori...
متن کاملStatistical Models for Causation
We review the basis for inferring causation by statistical modeling. Parameters should be stable under interventions, and so should error distributions. There are also statistical conditions on the errors. Stability is difficult to establish a priori, and the statistical conditions are equally problematic. Therefore, causal relationships are seldom to be inferred from a data set by running stat...
متن کاملCompact Representations of Extended Causal Models
Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of normality. In Halpern and Hitchcock (2011), we offer a definition of actual causation using extended causal models, which include information about ...
متن کاملCAUSATION OF FIRE ACCIDENT IN MEDICAL CENTERS: LEARNING FROM THE ACCIDENT IN SINA MEHR MEDICAL CLINIC IN TEHRAN (JUNE 30, 2020)
Introduction: Little is known about the causes and contributing factors of fire accidents in medical centers, like the fire accident in Sina Mehr medical clinic in Tehran on June 30, 2020 (19 killed and 14 injured). This study aims to analyze the causes and contributing factors of fire accidents in medical centers to prevent similar accidents. Methods: We used literature review, official repor...
متن کاملOn Cognitive Models of Causal Inferences and Causation Networks
Human thought, perception, reasoning, and problem solving are highly dependent on causal inferences. This paper presents a set of cognitive models for causation analyses and causal inferences. The taxonomy and mathematical models of causations are created. The framework and properties of causal inferences are elaborated. Methodologies for uncertain causal inferences are discussed. The theoretic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014